Even within concrete sciences like math and physics, there are plenty of discoveries to be made.
From a physicist who is creating a hacker-proof way to transmit information to a mathematician developing a new type of alegbraic geometry, we've highlighted seven people who are changing the landscapes of math and physics.
All of these scientists also appeared on our list of groundbreaking scientists who are changing the way we see the world.
SEE ALSO: 50 groundbreaking scientists who are changing the way we see the world
SEE ALSO: Business Insider is on Facebook!
Andrew Shields is creating a better system for keeping hackers out of confidential information.

Last spring, Andrew Shields and his colleagues successfully transmitted secure quantum key distributions (QKDs) through the fibers used for traditional telecommunications, such as computers and telephones, creating a safer way to send confidential data over long distances.
Traditional data-encryption systems use a standard "key" of 1s and 0s, leaving their messages vulnerable to hackers. But when QKDs are intercepted, the act of eavesdropping on the key automatically changes it, making it impossible for hackers to use it to gain access to the information and alerting the senders of a security breach. While other teams had successfully transmitted QKDs in protected lab environments, Shields' team is the first to find a way to use the technology in real-world settings.
Shields is a quantum physicist at Toshiba Research Europe in Cambridge, England.
Francis Halzen helped discover what happens inside black holes and supernovas — some of the most powerful cosmic sources in the universe.

To study neutrinos — tiny, subatomic particles that fly through all matter — Francis Halzen helped build the largest particle physics detector ever, known as the IceCube Neutrino Observatory.
In 2013, the Antarctica-based observatory finally discovered cosmic neutrinos, the highest-energy neutrinos ever observed. The discovery gives astronomers a unique look at what happens at the core of many powerful cosmic sources, such as black holes and supernovas.
Halzen is a physicist at the University of Wisconsin at Madison.
Jacob Lurie is rewriting how mathematicians understand complicated geometric objects.

Jacob Lurie is changing how mathematicians understand complicated geometric objects. He is a specialist in the field of algebraic geometry — the study of curves, surfaces, and their higher-dimensional counterparts intimately linked to the solutions of algebraic equations. Lurie has developed a radical new framework for this field called "derived algebraic geometry" that combines concepts from algebraic geometry and the related field of topology.
This new way of looking at the interplay between equations and shapes promises to lead to a much deeper understanding of geometry, and could also lead to breakthroughs in other areas of mathematics. Lurie is also a MacArthur fellow and recipient of the 2014 Breakthrough Prize in mathematics, and his work has been published in two books, "Higher Topos Theory" and "Higher Algebra," and numerous other journals and papers.
Lurie is a professor at Harvard University in the department of mathematics.
See the rest of the story at Business Insider
NOW WATCH: Here's the best look yet at the next big game starring Batman